4.7 Article

Design of the Hydraulically Actuated, Torque-Controlled Quadruped Robot HyQ2Max

期刊

IEEE-ASME TRANSACTIONS ON MECHATRONICS
卷 22, 期 2, 页码 635-646

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMECH.2016.2616284

关键词

Hydraulic actuation; HyQ2Max; legged locomotion; quadruped robot design

资金

  1. Fondazione Istituto Italiano di Tecnologia

向作者/读者索取更多资源

This paper presents the design of the hydraulically actuated quadruped robot HyQ2Max. HyQ2Max is an evolution of the 80 kg agile and versatile robot HyQ. Compared to HyQ, the new robot needs to be more rugged, more powerful and extend the existing locomotion skills with self-righting capability. Since the robot's actuation system has an impact on many aspects of the overall design/specifications of the robot (e.g., payload, speed, torque, overall mass, and compactness), this paper will pay special attention to the selection and sizing of the joint actuators. To obtain meaningful joint requirements for the new machine, we simulated seven characteristic motions that cover a wide range of required behaviors of an agile rough terrain robot, including trotting on rough terrain, stair climbing, push recovery, self-righting, etc. We will describe how to use the obtained joint requirements for the selection of the hydraulic actuator types, four-bar linkage parameters, and valve size. Poorly sized actuators may lead to limited robot capabilities or higher cost, weight, energy consumption, and cooling requirements. The main contributions of this paper are: 1) a novel design of an agile quadruped robot capable of performing trotting/crawling over flat/uneven terrain, balancing, and self-righting; 2) a detailed method to find suitable hydraulic cylinder/valve properties and linkage parameters with a specific focus on optimizing the actuator areas; and 3) to the best knowledge of the authors, the most complete review of hydraulic quadruped robots.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据