4.7 Review

Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: A review

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 743, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.140694

关键词

Microcystin-LR; Titanium dioxide; Photocatalysis; Modification method; Performance assessment

资金

  1. National Natural Science Foundation of China [21676305]
  2. Hunan ProvincialNatural Science Foundation of China [2019JJ40399]
  3. College Students' Innovation Project of Central South University [201910533210]

向作者/读者索取更多资源

Microcystin-LR (MC-LR), the most toxic and commonly encountered cyanotoxin, is produced by harmful cyanobacterial blooms and potentially threatens human and ecosystems health. Titanium dioxide (TiO2) photocatalysis is attracting growing attention and has been considered as an efficient, environmentally friendly and promising solution to eliminate MC-LR in the aquatic ecosystems. Over recent decades, scientific efforts have been directed towards the understanding of fundamentals, modification strategies, and application potentials of TiO2 photocatalysis in degrading MC-LR. In this article, recent reports have been reviewed and progress has been summarized in the development of heterogeneous TiO2-based photocatalysts for MC-LR photodegradation under visible, UV, or solar light. The proposed photocatalytic principles of TiO2 and destruction of MC-LR have been thoroughly discussed. Specifically, some main modification methods for improving the drawbacks and performance of TiO2 nanoparticle were highlighted, including element doping, semiconductor coupling, immobilization, floatability amelioration and magnetic separation. Moreover, the performance evaluation metrics quantum yield (QY) and figure of merit (FOM) were used to compare different photocatalysts in MC-LR degradation. The best performance was seen in N-TiO2 with QY and FOM values of 2.20E-07 molecules/photon and 1.00E-11 mol.LJ(g.J.h), N-TiO2 or N-TiO2-based materials may be excellent options for photocatalyst design in terms of MC-LR degradation. Finally, a summary of the remaining challenges and perspectives on new tendencies in this exciting frontier and still an emerging area of research were addressed accordingly. Overall, the present review will offer a deep insight for understanding the photodegradation of MC-LR with modified TiO2 to further inspire researchers that work in associated fields. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据