4.7 Article

Ni-Cu bimetallic catalysts on Yttria-stabilized zirconia for hydrogen production from ethanol steam reforming

期刊

FUEL
卷 280, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.118612

关键词

Ethanol steam reforming; Hydrogen production; Stability; Ni and Cu; Bimetallic catalysts

资金

  1. University of Sydney SOAR fellowship
  2. University of Sydney Sydney Nano Grand Challenge
  3. University of Sydney International Project Development Funding

向作者/读者索取更多资源

One of the key challenges in catalytic ethanol steam reforming (ESR) is the ease of deactivation of the catalysts caused by metal sintering and carbon deposition. In this study, bimetallic Ni-Cu catalysts supported on Yttria stabilized zirconia (YSZ) have been prepared for ESR. Bimetallic Ni-Cu catalysts were active for ESR and the addition of Cu can improve the Ni performance and stability of the catalysts in ESR. Adding a small amount of Cu to the catalyst successfully led to formation of Cu-Ni alloy, which is efficient for improving reducibility of the catalyst. However, high Cu content limited the activity of the catalysts due to the lack of exposed active sites of Ni and Cu. In ESR, Ni was proposed to be responsible for C-C bond cleavage while Cu was for the promotion of WGS. YSZ has very limited role in reducing coke formation as the catalyst support though it has high surface oxygen mobility, which is indicated by the serious deactivation by coke formation on Ni/YSZ monometallic catalyst. However, Cu addition on bimetallic Ni-Cu catalysts is proved to be effective to improve stability of the catalysts by reducing coke deposition. Among all the catalysts, Cu1Ni9/YSZ exhibited superior performance and stability with negligible activity loss during 20 h ESR reaction at 450 degrees C and 650 degrees C, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据