4.6 Article

HOS1 activates DNA repair systems to enhance plant thermotolerance

期刊

NATURE PLANTS
卷 6, 期 12, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41477-020-00809-6

关键词

-

资金

  1. Leaping Research Program by National Research Foundation of Korea (NRF) [NRF-2018R1A2A1A19020840]
  2. Next-Generation BioGreen 21 Program by the Rural Development Administration of Korea. [PJ013134]

向作者/读者索取更多资源

A study reveals that HOS1 activates the components of DNA repair systems to enhance the repair of heat-induced DNA damages and thermotolerance, establishing a direct link between DNA repair and thermotolerance. Plants possess an astonishing capability of effectively adapting to a wide range of temperatures, ranging from freezing to near-boiling temperatures(1,2). Yet, heat is a critical obstacle to plant survival. The deleterious effects of heat shock on cell function include misfolding of cellular proteins, disruption of cytoskeletons and membranes, and disordering of RNA metabolism and genome integrity(3-5). Plants stimulate diverse heat shock response pathways in response to abrupt temperature increases. While it is known that stressful high temperatures disturb genome integrity by causing nucleotide modifications and strand breakages or impeding DNA repair(6), it is largely unexplored how plants cope with heat-induced DNA damages. Here, we demonstrated that high expression of osmotically reponsive genes 1 (HOS1) induces thermotolerance by activating DNA repair components. Thermotolerance and DNA repair capacity were substantially reduced in HOS1-deficient mutants, in which thermal induction of genes encoding DNA repair systems, such as the DNA helicase RECQ2, was markedly decreased. Notably, HOS1 proteins were thermostabilized in a heat shock factor A1/heat shock protein 90 (HSP90)-dependent manner. Our data indicate that the thermoresponsive HSP90-HOS1-RECQ2 module contributes to sustaining genome integrity during the acquisition of thermotolerance, providing a distinct molecular link between DNA repair and thermotolerance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据