4.2 Article

Avoiding local minima in variational quantum eigensolvers with the natural gradient optimizer

期刊

PHYSICAL REVIEW RESEARCH
卷 2, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.2.043246

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy-Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC [2004/1-390534769]

向作者/读者索取更多资源

We compare the BFGS optimizer, ADAM and NatGrad in the context of VQES. We systematically analyze their performance on the QAOA ansatz for the transverse field Ising and the XXZ model as well as on overparametrized circuits with the ability to break the symmetry of the Hamiltonian. The BFGS algorithm is frequently unable to find a global minimum for systems beyond about 20 spins and ADAM easily gets trapped in local minima or exhibits infeasible optimization durations. NatGrad on the other hand shows stable performance on all considered system sizes, rewarding its higher cost per epoch with reliability and competitive total run times. In sharp contrast to most classical gradient-based learning, the performance of all optimizers decreases upon seemingly benign overparametrization of the ansatz class, with BFGS and ADAM failing more often and more severely than NatGrad. This does not only stress the necessity for good ansatz circuits but also means that overparametrization, an established remedy for avoiding local minima in machine learning, does not seem to be a viable option in the context of VQES. The behavior in both investigated spin chains is similar, in particular the problems of BFGS and ADAM surface in both systems, even though their effective Hilbert space dimensions differ significantly. Overall our observations stress the importance of avoiding redundant degrees of freedom in ansatz circuits and to put established optimization algorithms and attached heuristics to test on larger system sizes. Natural gradient descent emerges as a promising choice to optimize large VQES.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据