4.8 Article

Prenatal Exposure to Specific PM2.5 Chemical Constituents and Preterm Birth in China: A Nationwide Cohort Study

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 54, 期 22, 页码 14494-14501

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.0c02373

关键词

-

资金

  1. National Natural Science Foundation of China [91843302, 91643205, 81673179, 81530086]
  2. Shenkang Hospital Development Center Research Fund [SHDC12016239]

向作者/读者索取更多资源

Exposure to fine particulate matter (PM2.5) during pregnancy has been associated with preterm birth (PTB). However, the existing evidence is inconsistent, and the roles of specific PM2.5 chemical constituents remain unclear. Based on the China Labor and Delivery Survey, we included birth data from 89 hospitals in 25 provinces in mainland China, and conducted a national multicenter cohort study to examine the associations of PM2.5 and its chemical constituents with PTB risk in China. We applied satellite-based models to predict prenatal PM2.5 mass and six main component exposure. Multilevel logistic regression analysis was used to examine the associations, controlling for sociodemographic characteristics, seasonality, and spatial variation. We observe an increased PTB risk with an increase in PM2.5 mass and the most significant association is found during the third trimester when the adjusted odds ratio (OR) per interquartile range increases in PM2.5 total mass is 1.12 (95% confidence Interval, CI: 1.05-1.20). Infants conceived by assisted reproductive technology (ART) show greater PTB risk associated with PM2.5 exposure (OR = 1.33, 95% CI: 1.05-1.69) than those conceived naturally (OR = 1.11, 95% CI: 1.03-1.19). We also find black carbon, sulfate, ammonium and nitrate, often linked to fossil combustion, have comparable or larger estimates of the effect (OR = 1.07-1.14) than PM2.5. Our findings provide evidence that components mainly from fossil fuel combustion may have a perceptible influence on increased PTB risk associated with PM2.5 exposure in China. Additionally, compared to natural conception, conception through ART may be more susceptible to PM2.5 exposure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据