4.6 Article

An inverse vulcanized conductive polymer for Li-S battery cathodes

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 8, 期 41, 页码 21711-21720

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta06537d

关键词

-

资金

  1. Assistant Secretary of Energy Efficiency and Renewable Energy of the U.S. Department of Energy under the Battery Materials Research (BMR) program
  2. Office of Science of the U. S. Department of Energy

向作者/读者索取更多资源

Polymers with a broad range of properties, structural diversity, and mechanical flexibility have been adopted in all aspects of Li-S batteries. However, currently explored polymers for Li-S cathodes suffer from low conductivity, low S content, and poor cycling performance. In this first-principles study, we theoretically design a new polymer, poly(2-vinyl,1,4-phenylene sulfide), by modifying the conductive poly(1,4-phenylene sulfide) via the vinyl group to enhance its ability to vulcanize with element S. We compare the properties of the experimentally realized sulfur vulcanized polymers via condensation and our designed sulfur vulcanized polymers via crosslinking as Li-S battery cathodes, in terms of gravimetric and specific capacities, as well as structural stability during the lithiation. Overall, we find that our designed polymer possesses better conductivity, higher specific capacity and gravimetric energy density, and better kinetic stability, and restricts the shuttle effect more efficiently than the current experimentally explored one. Also, the cross-linked sulfur compounds can be activated efficiently due to the short transport lengths rather than dissolution in the electrolyte during battery operation. Therefore, we believe our designed polymer cathode is promising for practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据