4.4 Article

DFT study of the influence of impurities on the structural, electronic, optoelectronic, and nonlinear optical properties of graphene nanosheet functionalized by the carboxyl group -COOH

期刊

JOURNAL OF MOLECULAR MODELING
卷 26, 期 11, 页码 -

出版社

SPRINGER
DOI: 10.1007/s00894-020-04592-1

关键词

Graphene oxide nanosheets; X-doped graphene oxide nanosheets; Electronic; Optoelectronic; Nonlinear optical; Non-equivalent atoms

向作者/读者索取更多资源

In this work, we propose a modified model of graphene oxide nanosheet (GON), based on the Lerf-Klinowski model, through which we attach a carboxyl group (GON-COOH) to the non-equivalent C atom of coronene-based graphene oxide with formation of sp3-like orbital bond. Beryllium, boron, nitrogen, oxygen, and fluorine atoms are integrated into the GON at identical sites in order to study their impact on the physical and chemical properties of GON. Our aim is to propose new efficient materials for applications in optoelectronics and nonlinear optics (NLO). Chemical reactivity and structural, optical, and nonlinear optical properties of GON and its derivatives GON-X (X: Be, B, N, O, and F atoms) were investigated by using the density functional theory (DFT) at the B3LYP-D3/6-31+G(d,p) level of theory. According to the results obtained, the binding energy per atom of GON compound decreases slightly with addition of atoms of the second period elements of the periodic table. The GON-F compound exhibits the smallest value of gap energy compared to other studied compounds and can then be considered a proficient candidate for photovoltaic applications. In regard to NLO properties, we found that the studied models of GON compound theoretically exhibit a larger value of the first static hyperpolarizability than urea, the reference compound for NLO properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据