4.7 Article

Nanomechanical Gas Sensing with Laser Treated 2D Nanomaterials

期刊

ADVANCED MATERIALS TECHNOLOGIES
卷 5, 期 12, 页码 -

出版社

WILEY
DOI: 10.1002/admt.202000704

关键词

femtosecond laser; graphene oxides; membrane‐ type surface stress sensors; molybdenum disulfide; tungsten disulfide

资金

  1. Mitacs-Japan Society for the Promotion of Science (JSPS)
  2. Waterloo Institute for Nanotechnology (WIN)
  3. Natural Sciences and Engineering Research Council of Canada (NSERC)
  4. MEXT, Japan [18H04168]
  5. NSERC [RGPIN-2017-04212, RGPAS-2017-507977]

向作者/读者索取更多资源

2D nanomaterials such as graphene oxide (GO), molybdenum disulfide (MoS2), and tungsten disulfide (WS2) are viable candidates for use in chemical gas sensors due to their large specific surface area available for analyte adsorption. In this work, these 2D materials are treated with a femtosecond laser process to intentionally introduce defects, dopants, and functional groups to the material for improved gas adsorption properties. The materials are coated onto a nanomechanical membrane-type surface stress sensor (MSS) to evaluate their sensing capability toward a select group of volatile organic compounds. By utilizing the MSS platform, the approach avoids the need for 2D materials with conductive properties typically required in chemoresistive sensors. The results show that a longer laser treatment time for graphene oxide increases the sensor response, which is attributed to an increase in defects and oxygen functional groups. Doping of graphene oxide with boron nitride improves sensor response, likely due to the introduction of pyrrolic nitrogen groups with high chemical activity. Additionally, the graphene oxides demonstrate partial selectivity toward the detection of toluene, attributable to pi-pi interactions. MoS2 and WS2 nanoflakes also show enhanced sensor response attributed to the formation of apical/bridging sulfur bonds with high catalytic activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据