4.7 Article

The Protein-Protein Interaction Network Reveals a Novel Role of the Signal Transduction Protein PII in the Control of c-di-GMP Homeostasis in Azospirillum brasilense

期刊

MSYSTEMS
卷 5, 期 6, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mSystems.00817-20

关键词

protein interaction; PII protein; c-di-GMP; motility; metabolic regulation; cell motility; metabolome; protein interactions

资金

  1. CNPq
  2. Fundacao Araucaria
  3. CAPES
  4. CNPq-INCT
  5. Alexander von Humboldt Foundation
  6. South-East Health Authority of Norway (Helse Sor-Ost)
  7. Research Council of Norway
  8. Oslo University Hospital (OUS)
  9. National Science Foundation [NSF-MCB 1715185]

向作者/读者索取更多资源

The PII family comprises a group of widely distributed signal transduction proteins ubiquitous in prokaryotes and in the chloroplasts of plants. PII proteins sense the levels of key metabolites ATP, ADP, and 2-oxoglutarate, which affect the PII protein structure and thereby the ability of PII to interact with a range of target proteins. Here, we performed multiple ligand fishing assays with the PII protein orthologue GlnZ from the plant growth-promoting nitrogen-fixing bacterium Azospirillum brasilense to identify 37 proteins that are likely to be part of the PII proteinprotein interaction network. Among the PII targets identified were enzymes related to nitrogen and fatty acid metabolism, signaling, coenzyme synthesis, RNA catabolism, and transcription. Direct binary PII-target complex was confirmed for 15 protein complexes using pulldown assays with recombinant proteins. Untargeted metabolome analysis showed that PII is required for proper homeostasis of important metabolites. Two enzymes involved in c-di-GMP metabolism were among the identified PII targets. A PII-deficient strain showed reduced c-di-GMP levels and altered aerotaxis and flocculation behavior. These data support that PII acts as a major metabolic hub controlling important enzymes and the homeostasis of key metabolites such as c-di-GMP in response to the prevailing nutritional status. IMPORTANCE The PII proteins sense and integrate important metabolic signals which reflect the cellular nutrition and energy status. Such extraordinary ability was capitalized by nature in such a way that the various PII proteins regulate different facets of metabolism by controlling the activity of a range of target proteins by protein-protein interactions. Here, we determined the PII protein interaction network in the plant growth-promoting nitrogen-fixing bacterium Azospirillum brasilense. The interactome data along with metabolome analysis suggest that PII functions as a master metabolic regulator hub. We provide evidence that PII proteins act to regulate c-di-GMP levels in vivo and cell motility and adherence behaviors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据