4.7 Article

Secure Communications in Millimeter Wave Ad Hoc Networks

期刊

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
卷 16, 期 5, 页码 3205-3217

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TWC.2017.2676087

关键词

Ad hoc; millimeter wave; beamforming; uniform linear array; average achievable secrecy rate

资金

  1. U.K. Engineering and Physical Sciences Research Council [EP/N007840/1, EP/M016005/1]
  2. EPSRC [EP/N007840/1, EP/M016005/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/M016005/1, EP/N007840/1] Funding Source: researchfish

向作者/读者索取更多资源

Wireless networks with directional antennas, like millimeter wave (mmWave) networks, have enhanced security. For a large-scale mmWave ad hoc network in which eavesdroppers are randomly located, however, eavesdroppers can still intercept the confidential messages, since they may reside in the signal beam. This paper explores the potential of physical layer security in mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. For the special case of uniform linear array (ULA), a tractable approach is proposed to evaluate the average achievable secrecy rate. We also characterize the impact of artificial noise in such networks. Our results reveal that in the low transmit power regime, the use of low mmWave frequency achieves better secrecy performance, and when increasing transmit power, a transition from low mmWave frequency to high mmWave frequency is demanded for obtaining a higher secrecy rate. More antennas at the transmitting nodes are needed to decrease the antenna gain obtained by the eavesdroppers when using ULA. Eavesdroppers can intercept more information by using a wide beam pattern. Furthermore, the use of artificial noise may be ineffective for enhancing the secrecy rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据