4.7 Article

Line-of-Sight Millimeter-Wave Communications Using Orbital Angular Momentum Multiplexing Combined With Conventional Spatial Multiplexing

期刊

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
卷 16, 期 5, 页码 3151-3161

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TWC.2017.2675885

关键词

Millimeter-wave communications; multiple-input multiple output system; orbital angular momentum; spatial multiplexing

资金

  1. Intel Labs University Research Office, National Science Foundation
  2. DARPA InPho (Information in a Photon) Program
  3. Directorate For Engineering
  4. Div Of Electrical, Commun & Cyber Sys [1509965] Funding Source: National Science Foundation

向作者/读者索取更多资源

Line-of-sight wireless communications can benefit from the simultaneous transmission of multiple independent data streams through the same medium in order to increase system capacity. A common approach is to use conventional spatial multiplexing with spatially separated transmitter/receiver antennae, for which inter-channel crosstalk is reduced by employing multiple-input-multiple-output (MIMO) signal processing at the receivers. Another fairly recent approach to transmitting multiple data streams is to use orbital-angular-momentum (OAM) multiplexing, which employs the orthogonality among OAM beams to minimize inter-channel crosstalk and enable efficient (de) multiplexing. In this paper, we explore the potential of utilizing both of these multiplexing techniques to provide system design flexibility and performance enhancement. We demonstrate a 16 Gbit/s millimeter-wave link using OAM multiplexing combined with conventional spatial multiplexing over a short link distance of 1.8 meters (shorter than Rayleigh distance). Specifically, we implement a spatial multiplexing system with a 2x2 antenna aperture architecture, in which each transmitter aperture contains two multiplexed 4 Gbit/s data-carrying OAM beams. A MIMO-based signal processing is used at the receiver to mitigate channel interference. Our experimental results show performance improvements for all channels after MIMO processing, with bit-error rates of each channel below the forward error correction limit of 3.8 x 10(-3). We also simulate the capacity for both the 4 x 4 MIMO system and the 2 x 2 MIMO with OAM multiplexing. Our work indicates that OAM multiplexing and conventional spatial multiplexing can be simultaneously utilized to provide design flexibility. The combination of these two approaches can potentially enhance system capacity given a fixed aperture area of the transmitter/receiver (when the link distance is within a few Rayleigh distances).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据