4.7 Article

Facile electrostatic assembly of Si@MXene superstructures for enhanced lithium-ion storage

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 580, 期 -, 页码 68-76

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2020.07.028

关键词

MXene; Si; Electrostatic forces; Self-assembly; Lithium-ion battery

资金

  1. NSFC [21872038, 21733003]
  2. MOST, China [2017YFA0207303]
  3. Key Basic Research Program of Science and Technology Commission of Shanghai Municipality [17JC1400100]

向作者/读者索取更多资源

Silicon (Si) has attracted much attention as anode materials for next-generation lithium-ion batteries (LIBs) due to its high theoretical capacity. To improve the electrical conductivity, it is critically important to realize the uniform distribution of Si nanoparticles (NPs) onto conductive substrates such as graphene and MXene. Herein, a simple and effective strategy through facile electrostatic assembly was reported, in which Si NPs can adhere onto few-layer MXene (Ti3C2) nanosheets uniformly to afford Si@MXene superstructures. Importantly, Ti3C2 nanosheets not only facilitates Li+ and electron transport of the electrode materials, but also buffer the notorious volume expansion of Si NPs during charge/discharge. Meanwhile, the assembly of Si NPs prevents the re-stacking of Ti3C2 nanosheets, while simultaneously offering additional active sites. The as-prepared Si@Ti3C2 anode exhibits an initial capacity of 3502.3 mAh g(-1) at 0.1 A g(-1), retaining a high capacity of 1342.8 mAh g(-1) at 1 Ag-1 with a Coulombic efficiency of 99.8% after 200 cycles. This work provides a new strategy for the scalable synthesis of Si@MXene composites containing uniformly distributed Si NPs, which show a great promise for being used as highperformance anode materials for LIBs. (C) 2020 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据