4.2 Article

Hibiscus sabdariffa Linn. (Roselle) Polyphenols-Rich Extract Prevents Hyperglycemia-Induced Cardiac Oxidative Stress and Mitochondrial Damage in Diabetic Rats

期刊

SAINS MALAYSIANA
卷 49, 期 10, 页码 2499-2506

出版社

UNIV KEBANGSAAN MALAYSIA
DOI: 10.17576/jsm-2020-4910-15

关键词

Hyperglycemia; mitochondria; myocardial damage; ROS; roselle

资金

  1. Universiti Kebangsaan Malaysia, Malaysia via Geran Universiti Penyelidikan [GUP-2017-040]

向作者/读者索取更多资源

Cardiac mitochondrial damage plays a crucial Pyle in the initiation of diabetic cardiomyopathy. Hibiscus sabdariffa Linn. (roselle) has been proven to prevent various pathological conditions, however it remains unclear whether roselle extract can attenuate diabetes-induced mitochondrial damage. This study aimed to investigate whether roselle polyphenol-rich extract (HPE) is able to ameliorate hyperglycemia-induced oxidative stress and mitochondrial damage in diabetic rats. Diabetes was induced by a single dose of streptozotocin (55 mg kg(-1), intraperitoneally); and diabetic rats were then orally fed with 100 mg kg(-1) of HPE (DM+Roselle) or 150 mg kg(-1 )of Metformin (DM+MET) daily for 4 weeks. Meanwhile, the control and untreated diabetic (DM) groups were only orally given normal saline. After 4 weeks of treatment, the results showed that DM+Roselle group significantly improved blood glucose level and lipid profile status (p<0.05) compared to the DM group. DM+Roselle group also had significantly (p<0.05) lower the level of thiobarbituric acid reactive substances (TBARS) and advanced oxidation protein product (AOPP) in cardiac homogenate than the DM group. HPE supplementation also significantly improved activities of total superoxide dismutase (SOD), SOD-2, catalase (CAT) and level of reduced glutathione (GSH) of the cardiac homogenate. Complex I activity of mitochondria respiratory chain also decreased significantly (p<0.05) in DM+Roselle group as compared to the DM group. Observations using electron microscope showed that mitochondria in the DM+Roselle group appeared more organized compared to the DM group. In conclusion, these results highlight the potential of HPE as a protective agent against oxidative stress and mitochondrial damage in diabetic condition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据