4.7 Article

Biomechanical evaluation of internal fixation implants for femoral neck fractures: A comparative finite element analysis

期刊

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cmpb.2020.105714

关键词

Femoral neck fracture fixation; Dynamic hip screw (DHS); Cannulated screws (CSs); Proximal femoral nail antirotation (PFNA); Medial buttress plate; Finite element analysis (FEA)

向作者/读者索取更多资源

Background and Objective: It remains controversial regarding the optimal type of fixation implant for the treatment of femoral neck fractures (FNFs). Biomechanical rational for implant choices can benefit from the integration of finite element analysis (FEA) in device evaluation and design improvement. In this study, we aim to evaluate biomechanical performance of several internal fixation implants for Pauwels type III FNFs under physiological loading conditions using FEA, as well as to assess the biomechanical contribution of medial buttress plate (MBP) augmentation. Methods: Several fixation styles for FNFs have been analyzed numerically by the finite element method. Five groups of models were developed with different FNFs fixation implants, including dynamic hip screw (DHS), cannulated screws (CSs), proximal femoral nail antirotation (PFNA), DHS with MBP augmentation (DHS+MBP), and CSs with MBP (CSs+MBP). For each group, four FE models were established to evaluate strain in bone and stress in devices during walking and stair climbing conditions, which simulated the hip contact force using static and dynamic loadings respectively. Results: No notable differences were observed in peak strain within implanted bone and maximum stress values of the device between DHS and CSs. The implanted femur with PFNA was in a lower state of bone strain and implant stress. Although the buttress plate did not decrease peak bone strain, it alleviated stress concentration on device, especially for CSs under dynamic loadings. Conclusions: Compared to the other fixation styles, the PFNA showed biomechanical advantages of decreasing risk of implant failure and bone yielding. The MBP augmentation provided an additional load path to bridge fracture fragments, which reduced failure risk of DHS and CSs, especially during dynamic loading scenarios. Although further studies are needed for patients with other types of FNFs, our findings may provide valuable references for device design optimization in terms of complex physiological loadings, as well as for clinical decision making in surgical treatment of FNFs. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据