4.8 Article

Ultra-sensitive and resilient compliant strain gauges for soft machines

期刊

NATURE
卷 587, 期 7833, 页码 219-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41586-020-2892-6

关键词

-

向作者/读者索取更多资源

Strain gauges with both high sensitivity and high mechanical resilience, based on strain-mediated contact in anisotropically resistive structures, are demonstrated within a sensor-integrated, textile-based sleeve that can recognize human hand motions via muscle deformations. Soft machines are a promising design paradigm for human-centric devices(1,2) and systems required to interact gently with their environment(3,4). To enable soft machines to respond intelligently to their surroundings, compliant sensory feedback mechanisms are needed. Specifically, soft alternatives to strain gauges-with high resolution at low strain (less than 5 per cent)-could unlock promising new capabilities in soft systems. However, currently available sensing mechanisms typically possess either high strain sensitivity or high mechanical resilience, but not both. The scarcity of resilient and compliant ultra-sensitive sensing mechanisms has confined their operation to laboratory settings, inhibiting their widespread deployment. Here we present a versatile and compliant transduction mechanism for high-sensitivity strain detection with high mechanical resilience, based on strain-mediated contact in anisotropically resistive structures (SCARS). The mechanism relies upon changes in Ohmic contact between stiff, micro-structured, anisotropically conductive meanders encapsulated by stretchable films. The mechanism achieves high sensitivity, with gauge factors greater than 85,000, while being adaptable for use with high-strength conductors, thus producing sensors resilient to adverse loading conditions. The sensing mechanism also exhibits high linearity, as well as insensitivity to bending and twisting deformations-features that are important for soft device applications. To demonstrate the potential impact of our technology, we construct a sensor-integrated, lightweight, textile-based arm sleeve that can recognize gestures without encumbering the hand. We demonstrate predictive tracking and classification of discrete gestures and continuous hand motions via detection of small muscle movements in the arm. The sleeve demonstration shows the potential of the SCARS technology for the development of unobtrusive, wearable biomechanical feedback systems and human-computer interfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据