4.6 Article

Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 8, 期 42, 页码 22100-22110

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta07232j

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canada Foundation for Innovation (CFI)
  3. BC Knowledge Development Fund (BCKDF)
  4. MGX Minerals
  5. University of British Columbia (UBC)

向作者/读者索取更多资源

Rechargeable zinc-ion batteries (ZIBs) in mild/neutral aqueous electrolytes are promising for large-scale energy storage applications due to their merits of high capacity, intrinsic high safety, low cost and environmental benignity. However, the overall performance of ZIBs has been severely hindered by the uneven electrostripping/plating of Zn on the anodes, which could cause Zn dendrite formation, enlarged overpotential (capacity decay) and even cell short-circuit (inferior cycling stability). Herein, alucone, an inorganic-organic hybrid coating, by the molecular layer deposition (MLD) technique, was developed to address the aforementioned problems and improve the reversibility of Zn anodes for ZIBs. As a result, a long-life and deeply rechargeable Zn anode was demonstrated. With the optimized coating thickness of 60 MLD cycles (similar to 12 nm), an over 11-fold enhancement in the running lifetime (780 vs. 70 h) and a reduced overpotential (84.3 vs. 110.3 mV) were achieved compared to bare Zn at a current density of 3 mA cm(-2). Besides, the rechargeability of the Zn anode at high current densities and deep stripping/plating levels was also improved by alucone coating. Furthermore, the alucone coated Zn has been verified in Zn/MnO2 batteries and consequently, superior electrochemical performance with a high capacity retention of 83.3% after over 800 cycles at a current density of 1C was demonstrated. The detailed structure, morphology and surface chemistry evolution of Zn metal were comprehensively studied for interpreting the improved electrochemical performance. It is expected that this work may pave the way towards to rational design of high-performance aqueous ZIBs and shed light on the development of other metal anode-based battery systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据