4.6 Article

Charge transport and mobility relaxation in organic bulk heterojunction morphologies derived from electron tomography measurements

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 8, 期 43, 页码 15339-15350

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0tc03087b

关键词

-

资金

  1. U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD) [70NANB14H012]

向作者/读者索取更多资源

The charge carrier mobility is one of the most critical electronic materials properties that determines the ultimate performance of organic photovoltaic (OPV) cells. However, it is also a property with complex dependencies on the charge carrier density, electric field, lengthscale, and timescale, which can each vary depending on the chemical structure, molecular order and orientation, phase morphology, etc. These issues have made it extremely challenging to develop quantitative structure-property relationships that would allow rational molecular and materials design for next generation OPVs. Using a unique combination of advanced experimental morphology characterization (electron tomography) and recently developed open-source computational tools for morphology analysis and kinetic Monte Carlo charge transport simulations, we investigate how the microstructural features in real bulk heterojunction blends impact charge transport physics. This work demonstrates that simulated charge transport in real morphologies can differ significantly from that found with the commonly used Ising-based model. However, most significantly, there are fundamental differences in the mobility relaxation dynamics between homogeneous neat materials and bulk heterojunction blends. The tortuosity of the bulk heterojunction domain network causes electric-field-induced dispersion that can significantly prolong the mobility relaxation dynamics. These morphological effects must be considered when analyzing experimental mobility results and when choosing the appropriate measurement technique.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据