4.7 Article

Soft Template Electropolymerization of Polypyrrole for Improved pH-Induced Drug Delivery

期刊

出版社

MDPI
DOI: 10.3390/ijms21218114

关键词

electroactive polymers; conjugated polymers; drug delivery; electropolymerization; polypyrrole; inflammation; wound healing

资金

  1. NSERC Canada [RGPIN-2015-05014]
  2. Mitacs Globalink program

向作者/读者索取更多资源

Chronic wounds are characterized by a localized pH change from acidic (healthy) to alkaline (unhealthy), which can be harnessed to act as a switch for drug release from a polymer medium covering the wound for improved healing. To realize this, a new polymer dressing material is needed to help heal chronic wounds. Polypyrrole (PPy) is a biocompatible electroactive polymer that has been proven as a successful drug delivery mechanism, but currently lacks the capacity for scalable clinical applications due to its poor processability. In this study, PPy films with and without microstructures were produced using electrochemical oxidation and subsequently doped with fluorescein, a model drug molecule. To increase the drug loading capacity, microstructures were created through soft template polymerization of pyrrole around hydrogen gas bubbles. Fluorescein release was measured using UV spectroscopy over a pH range of 2 to 11, showing increased release at higher pH values. Microstructured films showed an increased doping capacity compared to flat PPy films, attributed to the increase in drug incorporation sites. The pH-activated release mechanism was shown to be successful and can be applied as a pH-sensitive biosensor and drug delivery system in vitro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据