4.6 Article

Atrial Fibrillation Detection During Sepsis: Study on MIMIC III ICU Data

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JBHI.2020.2995139

关键词

Electrocardiography; Feature extraction; MIMICs; Heart rate variability; Entropy; Databases; Detection algorithms; Sepsis; ICU; Atrial fibrillation; P-wave; Premature beat; Poincaré plot; Annotations

资金

  1. NIH [R01 HL136660]

向作者/读者索取更多资源

Sepsis is defined by life-threatening organ dysfunction during infection and is one of the leading causes of critical illness. During sepsis, there is high risk that new-onset of atrial fibrillation (AF) can occur, which is associated with significant morbidity and mortality. As a result, computer aided automated and reliable detection of new-onset AF during sepsis is crucial, especially for the critically ill patients in the intensive care unit (ICU). In this paper, a novel automated and robust two-step algorithm to detect AF from ICU patients using electrocardiogram (ECG) signals is presented. First, several statistical parameters including root mean square of successive differences, Shannon entropy, and sample entropy were calculated from the heart rate for the screening of possible AF segments. Next, Poincare plot-based features along with P-wave characteristics were used to reduce false positive detection of AF, caused by the premature atrial and ventricular beats. A subset of the Medical Information Mart for Intensive Care (MIMIC) III database containing 198 subjects was used in this study. During the training and validation phases, both the simple thresholding as well as machine learning classifiers achieved very high segment-wise AF classification performance. Finally, we tested the performance of our proposed algorithm using two independent test data sets and compared the performance with two state-of-the-art methods. The algorithm achieved an overall 100% sensitivity, 98% specificity, 98.99% accuracy, 98% positive predictive value, and 100% negative predictive value on the subject-wise AF detection, thus showing the efficacy of our proposed algorithm in critically ill sepsis patients. The annotations of the data have been made publicly available for other investigators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据