4.8 Article

Ionization behavior of nanoporous polyamide membranes

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2008421117

关键词

desalination; polyamide membranes; charged nanopore; nanofluidics; confinement effects

资金

  1. Center for Enhanced Nanofluidic Transport, an Energy Frontier Research Center - US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0019112]
  2. NSF

向作者/读者索取更多资源

Escalating global water scarcity necessitates high-performance desalination membranes, for which fundamental understanding of structure-property-performance relationships is required. In this study, we comprehensively assess the ionization behavior of nanoporous polyamide selective layers in state-of-the-art nanofiltration (NF) membranes. In these films, residual carboxylic acids and amines influence permeability and selectivity by imparting hydrophilicity and ionizable moieties that can exclude coions. We utilize layered interfacial polymerization to prepare physically and chemically similar selective layers of controlled thickness. We then demonstrate location-dependent ionization of carboxyl groups in NF polyamide films. Specifically, only surface carboxyl groups ionize under neutral pH, whereas interior carboxyl ionization requires pH >9. Conversely, amine ionization behaves invariably across the film. First-principles simulations reveal that the low permittivity of nanoconfined water drives the anomalous carboxyl ionization behavior. Furthermore, we report that interior carboxyl ionization could improve the water-salt permselectivity of NF membranes over fourfold, suggesting that interior charge density could be an important tool to enhance the selectivity of polyamide membranes. Our findings highlight the influence of nanoconfinement on membrane transport properties and provide enhanced fundamental understanding of ionization that could enable novel membrane design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据