4.8 Article

A molten calcium carbonate mediator for the electrochemical conversion and absorption of carbon dioxide

期刊

GREEN CHEMISTRY
卷 22, 期 22, 页码 7946-7954

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0gc02626c

关键词

-

资金

  1. Fundamental Research Funds for the Central Universities [N2025035, XLYC1807042]
  2. 111 Project [B16009]

向作者/读者索取更多资源

High-temperature molten salts are an excellent electrolyte to bring about redox reactions at a rapid rate without using rationally designed nano-structured catalysts. However, the large-scale electrolyzer is constrained by the use of expensive and resource-deficient lithium salts. Using Earth-abundant CaCO3 releases the pressure of using strategic lithium resources, but the low solubility of CaO in molten carbonates disables the capability of capturing CO2. In addition, the separation of carbon from water-insoluble CaO and CaCO3 consumes a large amount of acids. To tackle these challenges, we report a CaCO3-containing molten carbonate electrolyzer to prevent the use of lithium salts, and a molten CaCl2 dissolver to separate carbon from CaO that is soluble in molten CaCl2 and can capture CO2 by carbonization. More importantly, we develop a salt-soluble-to-water-insoluble approach for producing ultrafine CaCO3 using molten salt as a soft template. Overall, this study opens a pathway to use cheap and Earth-abundant molten CaCO3 as a mediator to convert CO2 to oxygen at a cost-effective inert anode, with value-added carbon at the cathode, and ultrafine CaCO3 through a salt-to-solution process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据