4.6 Article

Rational design of a highly mesoporous Fe-N-C/Fe3C/C-S-C nanohybrid with dense active sites for superb electrocatalysis of oxygen reduction

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 8, 期 44, 页码 23436-23454

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta06987f

关键词

-

资金

  1. National Research Foundation (NRF) - Ministry of Science and ICT of the Republic of Korea [2017R1A2B3004917, 2019R1A5A8080326]
  2. National Research Foundation of Korea [5199991614006] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Innovating efficient and robust electrocatalysts with economical production cost for the oxygen reduction reaction (ORR) is of utmost significance for enhancing the energy efficiency of fuel cells and metal-air batteries. Herein, a single-step doping/annealing strategy has been developed for fabricating an Fe-N-C/Fe3C/C-S-C nanohybrid with a high N-doping level, well-defined mesoporous/microporous architecture, and high density of efficient active sites. The importance of tuning the S-doping into the electrocatalyst carbon framework has been fully elaborated for the first time. Under alkaline conditions, the nanohybrid displayed an exceptional onset potential (E-0) and half-wave potential (E-1/2) of 1.078 and 0.929 V vs. reversible hydrogen electrode (RHE). Furthermore, it manifests a dominant four-electron transfer reaction, marvelous selectivity for the ORR in the presence of methanol, and excellent durability after 15 000 potential cycles with almost zero degradation in performance under both acidic and alkaline conditions. The superb performance is due to the high density of active sites, like FeNx, FeSx, Fe3C, pyridinic-N, graphitic-N, C-S-C, and C-SOx-C, that efficiently catalyze the ORR. In addition, the high graphitization degree boosts the electron conductivity and corrosion resistance; meanwhile, the high surface area and ideal mesoporosity enhance the mass transfer and facilitate the maximum exposure of the active sites to the electrolyte and reactants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据