4.8 Review

Two-dimensional nonlayered materials for electrocatalysis

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 13, 期 11, 页码 3993-4016

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ee01714k

关键词

-

资金

  1. National Science Foundation [DMR-1709025]

向作者/读者索取更多资源

Creating two-dimensional (2D) geometry from nonlayered catalytic materials may significantly advance electrocatalyst design. The 2D morphology of three-dimensional lattices (2D nonlayered materials) offer large structural distortions, massive surface dangling bonds, and coordinated-unsaturated surface atoms, which can induce high surface chemical activity and promote the chemisorption of reactants and fast interfacial charge transfer, thereby enhancing the electrocatalytic performance. In this article, we review typical strategies for structural engineering and manipulation of electronic states to enable the unique electrocatalytic advantages of 2D nonlayered materials. An overview is presented on recent research advances in the development of 2D nonlayered materials for catalyzing the representative electrochemical reactions that are essential to energy and sustainability, including hydrogen evolution, oxygen evolution, oxygen reduction, and CO2 reduction. For each type of redox reactions, their unique catalytic performance and underlying mechanism are discussed. Important achievements and key challenges are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据