4.7 Article

Electric-field-induced antiferroelectric to ferroelectric phase transition in polycrystalline NaNbO3

期刊

ACTA MATERIALIA
卷 200, 期 -, 页码 127-135

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2020.09.002

关键词

Antiferroelectric; NaNbO3; Phase transition; Lead free

资金

  1. Hessian State Ministry for Higher Education, Research and the Arts under the LOEWE collaborative project FLAME
  2. Deutsche Forschungsgemeinschaft (DFG) [BU 911/28-1]
  3. Profile Area From Material to Product Innovation of the TU Darmstadt
  4. European Research Council (ERC) Horizon 2020 Program [805359-FOXON]

向作者/读者索取更多资源

Electric-field-induced phase transitions are the most important characteristics of antiferroelectric materials. However, in several prototype antiferroelectrics, these transitions are irreversible and the origin of this behavior is poorly understood. This prevents their widespread use, for example, in energy storage and memory applications. Here, we investigated the antiferroelectric-ferroelectric phase transitions in polycrystalline NaNbO3, a material recently suggested as the basis for lead-free antiferroelectrics with high energy storage densities. An irreversible transition from the antiferroelectric state to a new state showing macroscopic piezoelectricity (d(33)=35 pC/N) was induced at 11.6 kV/mm (room temperature, 1 Hz), accompanied by a 33% drop in permittivity. Microscopically, a change from a translational antiferroelectric domain structure to a wedge-shaped ferroelectric domain structure was observed using transmission electron microscopy. Na-23 solid-state nuclear magnetic resonance allowed for a detailed study of the local structure and revealed pure antiferroelectric and coexisting antiferroelectric/ferroelectric nature of the samples before and after the application of an electric field, respectively. Interestingly, despite the large electric fields applied, only 50 +/- 5% of the material underwent the antiferroelectric-ferroelectric phase transition, which was related to the materials microstructure. The temperature- and frequencydependence of the phase transition was studied and compared to the behavior observed in lead-based antiferroelectric systems. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据