3.8 Proceedings Paper

A Hybrid Quantum Enabled RBM Advantage: Convolutional Autoencoders for Quantum Image Compression and Generative Learning

出版社

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.2558832

关键词

Quantum Computing; Quantum Annealing; D-Wave; Restricted Boltzmann Machine; Autoencoder; Deep Learning; Data Compression

资金

  1. D-Wave
  2. NASA [NNH16ZDA001N-AIST16-0091]

向作者/读者索取更多资源

Understanding how the D-Wave quantum computer could be used for machine learning problems is of growing interest. Our work explores the feasibility of using the D-Wave as a sampler for a machine learning task. We describe a hybrid method that combines a classical deep neural network autoencoder with a quantum annealing Restricted Boltzmann Machine (RBM) using the D-Wave for image generation. Our method overcomes two key limitations in the 2000-qubit D-Wave processor, namely the limited number of qubits available to accommodate typical problem sizes for fully connected quantum objective functions, and samples that are binary pixel representations. As a consequence of these limitations we are able to show how we achieved nearly a 22-fold compression factor of grayscale 28 x 28 sized images to binary 6 x 6 sized images with a lossy recovery of the original 28 x 28 grayscale images. We further show how generating samples from the D-Wave after training the RBM, resulted in 28 x 28 images that were variations of the original input data distribution, as opposed to recreating the training samples. We evaluated the quality of this method by using a downstream classification method. We formulated a MNIST classification problem using a deep convolutional neural network that used samples from the quantum RBM to train the MNIST classifier and compared the results with a MNIST classifier trained with the original MNIST training data set, as well as a MNIST classifier trained using classical RBM samples. We also explored using a secondary dataset, the MNIST Fashion dataset and demonstrate the first quantum-generated fashion. Our hybrid autoencoder approach indicates advantage for RBM results relative to the use of a current RBM classical computer implementation for image-based machine learning and even more promising results for the next generation D-Wave quantum system. Our method for compression and image mappings is not constrained to RBMs, the autoencoder part of this method could be coupled with other quantum-based algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据