4.2 Article

Nano- and biosensors for the detection of SARS-CoV-2: challenges and opportunities

期刊

MATERIALS ADVANCES
卷 1, 期 9, 页码 3092-3103

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ma00702a

关键词

-

向作者/读者索取更多资源

Nanotechnology and biotechnology are currently being focused on pathogenic viruses, and researchers are ready to use these approaches to detect viral infections. Indeed, during pandemics, innovative nano-based structures and nanobiotechnology can be employed for the rapid, sensitive, and reliable detection of pathogenic viruses to control and prevent/reduce their spread, which is important in the case of the COVID-19 pandemic. Generally, the currently employed detection technique for COVID-19 is quantitative real-time polymerase chain reaction (qRT-PCR) technology, but it is labor-intensive, time-consuming, and cannot be promptly used in remote or resource-limited settings. This may lead to obstacles in obtaining actual data on the infectivity and transmission of SARS-CoV-2. Accordingly, nano- and biosensors should have sufficient sensitivity, selectivity, user-friendliness, scalability, authenticity, portability, specificity, and rapid/robust properties, with the potential for highly qualified and reliable screening, and great sensitivity, with minimal false positive/negative responses. This paper summarizes important alternative nano- and biosensor-based diagnostics approaches in comparison with the conventional methods used for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Additionally, current important challenges and future perspectives related to the development of these innovative sensors for the detection of SARS-CoV-2 are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据