4.4 Article

Matching Game With No-Regret Learning for IoT Energy-Efficient Associations With UAV

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGCN.2020.3008992

关键词

Internet of Things; one-to-many matching game; unmanned aerial vehicles; regret matching

向作者/读者索取更多资源

Unmanned aerial vehicles (UAVs) are a promising technology to provide an energy-efficient and cost-effective solution for data collection from ground Internet of Things (IoT) network. In this paper, we analyze the UAV-IoT device associations that provide reliable connections with low communication power and load balance the traffic using analytical techniques from game theory. In particular, to maximize the IoT devices' benefits, a novel framework is proposed to assign them the most suitable UAVs. We formulate the problem as a distributed algorithm that combines notions from matching theory and no-regret learning. First, we develop a many-to-one matching game where UAVs and IoT devices are the players. In this subgame, the players rank one another based on individual utility functions that capture their needs. Each IoT device aims to minimize its transmitting energy while meeting its signal-to-interference-plus-noise-ratio (SINR) requirements, and each UAV seeks to maximize the number of served IoT devices while respecting its energy constraints. Second, a non-cooperative game based on no-regret learning is used to determine each IoT device's regret. Then, UAVs open a window for transfers to the IoT devices. Simulation results show that the proposed approach provides a low average total transmit power, ensures fast data transmission and optimal utilization of the UAVs' bandwidth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据