4.5 Article

Leaf dorsoventrality candidate gene CpARF4 has conserved expression pattern but divergent tasiR-ARF regulation in the water fern Ceratopteris pteridoides

期刊

AMERICAN JOURNAL OF BOTANY
卷 107, 期 11, 页码 1470-1480

出版社

WILEY
DOI: 10.1002/ajb2.1570

关键词

auxin response factor; ferns; gene duplication; leaf evolution; Parkeriaceae; Polypodiaceae; Aspleniaceae; tasiR‐ ARF

资金

  1. National Natural Science Foundation of China [31260056]
  2. Jishou University Startup Fellowship [8811910]

向作者/读者索取更多资源

PREMISE Leaves are traditionally classified into microphylls and megaphylls, and recently have been regarded as independently originating in lycophytes, ferns, and seed plants. The developmental genetics of leaf dorsoventrality, a synapomorphy in vascular plants, has been extensively studied in flowering plants. AUXIN RESPONSE FACTOR4 (ARF4) genes are key to leaf abaxial identity in flowering plants, but whether they exist in ferns is still an open question. METHODS ARF4 genes from Ceratopteris pteridoides, Cyrtomium guizhouense, and Parathelypteris nipponica were mined from transcriptomes and investigated in terms of evolutionary phylogeny and sequence motifs, with a focus on the tasiR-ARF binding site. In situ hybridization was used to localize expression of CpARF4 in Ceratopteris pteridoides. 5 ' RNA ligase-mediated-RACE was employed to verify whether CpARF4 transcripts were sliced by tasiR-ARF. RESULTS ARF4 genes exist in ferns, and this lineage originates from a gene duplication in the common ancestor of ferns and seed plants. ARF4 genes are of a single copy in the ferns studied here, and they contain divergent and, at most, one tasiR-ARF binding site. CpARF4 is expressed in the abaxial but not the adaxial domain of leaf primordia at various developmental stages. Transcript slicing guided by tasiR-ARF is active in C. pteridoides, but CpARF4 probably has not been affected by it. CONCLUSIONS Fern ARF4 genes differ in copy number and tasiR-ARF regulation relative to flowering plants, though they can be similarly expressed in the abaxial domain of leaves, revealing a key role for ARF4 genes in the evolution of leaf dorsoventrality of vascular plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据