4.7 Article

Changes in physiological and photosynthetic parameters in tomato of different ethylene status under salt stress: Effects of exogenous 1-aminocyclopropane-1-carboxylic acid treatment and the inhibition of ethylene signalling

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 156, 期 -, 页码 345-356

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2020.09.019

关键词

1-Aminocyclopropane-1-carboxylic acid; Ethylene status; Non-photochemical quenching; Photosystem I; Reduced carbon; Salt stress; Tomato

资金

  1. National Research, Development and Innovation Office [OTKA K 101243, OTKA PD112855]
  2. Hungary-Serbia IPA Cross-border Co-operation Programme [HUSRB/1203/221/173]

向作者/读者索取更多资源

Although ethylene (ET) is an important participant in plant responses to salt stress, its role in the early period of acclimation, especially in the case of photosynthesis has not been revealed in detail. In this study, the effects of tolerable (100 mM) or lethal (250 mM) NaCl concentrations were investigated in hydroponically grown tomato (Solanum lycopersicum L. cv. Ailsa Craig) plants of different ET status, in wild type (WT) plants, in WT plants pretreated with the ET generator 1-aminocyclopropane-1-carboxylic acid (ACC) and in ET insensitive, Never ripe (Nr/Nr) mutants for 1-, 6- and 24 h. In the leaves ACC treatment reduced the osmotic effect of salt stress, while Nr mutation enhanced not only osmotic but ionic component of salt stress at 100 mM NaCl. ET insensitivity caused greater decline in stomatal conductance and photosynthetic CO2 assimilation rate than in the controls under tolerable salt stress, but both ACC treatment and Nr mutation helped to maintain positive carbon assimilation under lethal salt stress after 24 h. Nr mutant leaves showed highly enhanced regulated non-photochemical quenching (NPQ) and therefore lower quantum yield of photosystem II (PSII), due to more intensive cyclic electron flow around photosystem I (CEF-PSI), which was further increased under high salinity. Exogenous ACC treatment lowered CEF-PSI and enhanced PSII photochemistry after 6 h of lethal salt stress. Controlling PSI photoinhibition, ET is suggested to be an important regulator of CEF-PSI and photoprotection under salt stress. Furthermore, the altered ET status could cause contrasting effects under different stress severity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据