4.6 Article

Low Background Radiation Detection Techniques and Mitigation of Radioactive Backgrounds

期刊

FRONTIERS IN PHYSICS
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphy.2020.577734

关键词

gamma-ray spectrometry; ultra-low background; germanium detectors; alpha spectrometry; backgrounds

资金

  1. Canada Foundation for Innovation
  2. Province of Ontario

向作者/读者索取更多资源

The study of rare fundamental physics phenomena, such as double-beta decay, rare nuclear decays and dark matter, requires very low levels of background radiation in order to observe a signal. To achieve the required background levels, experiments are located deep underground as these facilities provide significant rock overburden and commensurate reduction in the cosmic ray flux and cosmic ray-spallation induced products. An overview of the sources of these backgrounds will be presented. Taking advantage of the deep underground laboratory spaces, there have been a growing number of underground measurements in other fields, including environmental monitoring, benchmarking of other physical techniques, Life Science studies in low background environments, and material selection. The exceptional sensitivity and high resolution of high-purity germanium detectors allows for very sensitive measurements using gamma-ray spectrometry. Their use has been increasing as they allow for non-destructive measurements of experiment components, which can be directly used if they meet specified background requirements. This paper will discuss the current most sensitive ultra-low background germanium detectors in operation and explain how to achieve the best level of background reduction to attain the best sensitivities. In addition, an overview of several complementary low background measurement methods will be discussed. A proposed program to cross calibrate germanium detectors at several laboratories will be described and a searchable database used to store radioactivity measurements of experimental materials will be introduced.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据