4.7 Article

Study on Interaction Between Temporal and Spatial Information in Classification of EMG Signals for Myoelectric Prostheses

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSRE.2017.2687761

关键词

Classification accuracy; myoelectric control; pattern recognition; prosthetics; surface electromyography

资金

  1. Innovate UK

向作者/读者索取更多资源

Advanced forearm prosthetic devices employ classifiers to recognize different electromyography (EMG) signal patterns, in order to identify the user's intended motion gesture. The classification accuracy is one of the main determinants of real-time controllability of a prosthetic limb and hence the necessity to achieve as high an accuracy as possible. In this paper, we study the effects of the temporal and spatial information provided to the classifier on its off-line performance and analyze their inter-dependencies. EMG data associated with seven practical hand gestures were recorded from partial-hand and trans-radial amputee volunteers as well as able-bodied volunteers. An extensive investigation was conducted to study the effect of analysis window length, window overlap, and the number of electrode channels on the classification accuracy as well as their interactions. Our main discoveries are that the effect of analysis window length on classification accuracy is practically independent of the number of electrodes for all participant groups; window overlap has no direct influence on classifier performance, irrespective of the window length, number of channels, or limb condition; the type of limb deficiency and the existing channel count influence the reduction in classification error achieved by adding more number of channels; partial-hand amputees outperform trans-radial amputees, with classification accuracies of only 11.3% below values achieved by able-bodied volunteers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据