4.7 Article

Drought-induced AtbZIP62 transcription factor regulates drought stress response in Arabidopsis

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 156, 期 -, 页码 384-395

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2020.09.013

关键词

AtbZIP62; AtPYD1; Drought tolerance; Phytohormones; Nitric oxide; Arabidopsis

资金

  1. Next-Generation BioGreen 21 Program (SSAC) [PJ01342501]
  2. Rural Development Administration, Republic of Korea

向作者/读者索取更多资源

We investigated the role of AtbZIP62, an uncharacterized Arabidopsis bZIP TF, in oxidative, nitro-oxidative and drought stress conditions using reverse genetics approach. We further monitored the expression of AtPYD1 gene (orthologous to rice OsDHODH1 involved in the pyrimidine biosynthesis) in atbzip62 knock-out (KO) plants in order to investigate the transcriptional interplay of AtbZIP62 and AtPYD1. The atbzip62 KO plants showed significant increase in shoot length under oxidative stress, while no significant difference was recorded for root length compared to WT. However, under nitro-oxidative stress conditions, atbzip62 showed differential response to both NO-donors. Further characterization of AtbZIP62 under drought conditions showed that both atbzip62 and atpyd1-2 showed a sensitive phenotype to drought stress, and could not recover after re-watering. Transcript accumulation of AtbZIP62 and AtPYD1 showed that both were highly up-regulated by drought stress in wild type (WT) plants. Interestingly, AtPYD1 transcriptional level significantly decreased in atbzip62 exposed to drought stress. However, AtbZIP62 expression was highly induced in atpyd1-2 under the same conditions. Both AtbZIP62 and AtPYD1 were up-regulated in atnced3 and atcat2 while showing a contrasting expression pattern in atgsnor13. The recorded increase in CAT, POD, and PPO-like activities, the accumulation of chlorophylls and total carotenoids, and the enhanced proline and malondialdehyde levels would explain the sensitivity level of atbzip62 towards drought stress. All results collectively suggest that AtbZIP62 could be involved in AtPYD1 transcriptional regulation while modulating cellular redox state and photosynthetic processes. In addition, AtbZIP62 is suggested to positively regulate drought stress response in Arabidopsis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据