4.8 Article

Single-Molecule Plasmonic Optical Trapping

期刊

MATTER
卷 3, 期 4, 页码 1350-1360

出版社

CELL PRESS
DOI: 10.1016/j.matt.2020.07.019

关键词

-

资金

  1. National Natural Science Foundation of China [21533006, 21621091, 21673195, 21973079, 21722305]
  2. National Key RD Program [2017YFA0204902, 2015CB932300]

向作者/读者索取更多资源

The volume of the object that can be manipulated in solution is continuously decreasing toward an ultimate goal of a single molecule. However, Brownian motions suppress the molecular trapping. To date, free-molecule trapping in solution has not been accomplished. Here, we develop a strategy to directly trap, investigate, and release single molecules (similar to 2 nm) in solution by using an adjustable plasmonic optical nanogap, which has been further applied for selective single-molecule trapping. Comprehensive experiments and theoretical simulations demonstrated that the trapping force originated from plasmonic nanomaterials. This technique opens an avenue to manipulate single molecules and other objects in the size range of primary interest for physics, chemistry, and life and material sciences without the limitations of strong bonding group, ultra-high vacuum, and ultra-low temperature, and makes possible controllable single-molecule manipulation and investigation as well as bottom-up construction of nanodevices and molecular machines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据