4.6 Article

Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 8, 期 45, 页码 24053-24064

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta08979f

关键词

-

资金

  1. National Natural Science Foundation of China [51975215, 61574060]
  2. Science and Technology Commission of Shanghai Municipality [19511120100]

向作者/读者索取更多资源

Nickel cobalt sulfide (NiCo2S4) is a promising battery-type material for electrochemical energy storage. However, the slow charge transfer kinetics and ion diffusion as well as the deficiency of electrochemically active sites hinder the practical application of NiCo2S4. Defect engineering at the atomic level is adopted to improve charge storage kinetics, through the incorporation of P dopants and S vacancies onto the surface of a NiCo2S4 nanotube (P-NiCo2S4-x). Experimental results reveal that the introduction of these defects effectively increases the electrical conductivity and induces the formation of low oxidation state Ni and Co species, accelerating the charge transfer kinetics and enabling rich faradaic redox chemistry. Moreover, the partial substitution of S sites with P improves the covalent nature of P-NiCo2S4-x, facilitating surface electroactivity. The as-prepared P-NiCo2S4-x shows a high specific capacity of 1806.4 C g(-1) at 1 A g(-1) and a 95.5% capacity retention after 5000 cycles at a high current density of 30 A g(-1). Flexible solid-state asymmetric supercapacitors with P-NiCo2S4-x and activated carbon as the positive and negative electrodes, respectively, deliver a high energy density of 68.2 W h kg(-1) at 800 W kg(-1) and excellent cycling stability. Moreover, the device exhibits good mechanical flexibility with negligible capacitance decay under different bending states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据