4.8 Review

Higher Incidence of B Cell Malignancies in Primary Immunodeficiencies: A Combination of Intrinsic Genomic Instability and Exocytosis Defects at the Immunological Synapse

期刊

FRONTIERS IN IMMUNOLOGY
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2020.581119

关键词

immunological synapse; actin cytoskeleton; membrane trafficking; exocytosis; cancer; primary immunodeficiencies; B cells; cytotoxic cells

资金

  1. Wenner-Gren foundations
  2. Swedish Research Council
  3. Cancer Society
  4. Childhood Cancer Fund
  5. StratCan BlueSky award
  6. European Commission [249177]
  7. Ake Olsson foundation
  8. Ake Wiberg Foundation
  9. Bergvall Foundation
  10. King Gustaf V's 80-year Foundation
  11. Karolinska Institutet
  12. Cancer Foundation Luxembourg [FC/2019/02]
  13. National Research Fund [C19/BM/13579644, PRIDE15/10675146/CANBIO]
  14. Think Pink Lux

向作者/读者索取更多资源

Congenital defects of the immune system called primary immunodeficiency disorders (PID) describe a group of diseases characterized by a decrease, an absence, or a malfunction of at least one part of the immune system. As a result, PID patients are more prone to develop life-threatening complications, including cancer. PID currently include over 400 different disorders, however, the variety of PID-related cancers is narrow. We discuss here reasons for this clinical phenotype. Namely, PID can lead to cell intrinsic failure to control cell transformation, failure to activate tumor surveillance by cytotoxic cells or both. As the most frequent tumors seen among PID patients stem from faulty lymphocyte development leading to leukemia and lymphoma, we focus on the extensive genomic alterations needed to create the vast diversity of B and T lymphocytes with potential to recognize any pathogen and why defects in these processes lead to malignancies in the immunodeficient environment of PID patients. In the second part of the review, we discuss PID affecting tumor surveillance and especially membrane trafficking defects caused by altered exocytosis and regulation of the actin cytoskeleton. As an impairment of these membrane trafficking pathways often results in dysfunctional effector immune cells, tumor cell immune evasion is elevated in PID. By considering new anti-cancer treatment concepts, such as transfer of genetically engineered immune cells, restoration of anti-tumor immunity in PID patients could be an approach to complement standard therapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据