4.6 Article

Active Surface with Dynamic Microstructures and Hierarchical Gradient Enabled by in situ Pneumatic Control

期刊

MICROMACHINES
卷 11, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/mi11110992

关键词

dynamic microstructure; pneumatic; active surface; gradient

资金

  1. National Natural Science Foundation of China (NSFC) [61590930, 61825502, 61827826, 61960206003]

向作者/读者索取更多资源

An active surface with an on-demand tunable topography holds great potential for various applications, such as reconfigurable metasurfaces, adaptive microlenses, soft robots and four-dimensional (4D) printing. Despite extensive progress, to achieve refined control of microscale surface structures with large-amplitude deformation remains a challenge. Moreover, driven by the demand of constructing a large area of microstructures with increased complexity-for instance, biomimetic functional textures bearing a three-dimensional (3D) gradient-novel strategies are highly desired. Here, we develop an active surface with a dynamic topography and three-tier height gradient via a strain-tunable mismatching-bonding process. Pneumatic actuation allows for rapid, reversible and uniform regulation of surface microstructures at the centimeter scale. The in-situ modulation facilitates large-amplitude deformation with a maximum tuning range of 185 mu m. Moreover, the structural gradient can be modulated by programming the strain value of the bonding process. With our strategy, another two types of surfaces with a four-tier gradient and without gradient were also prepared. By providing active modulation and design flexibility of complicated microstructures, the proposed strategy would unlock more opportunities for a wealth of novel utilizations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据