4.7 Article

Day-ahead prediction of hourly subentry energy consumption in the building sector using pattern recognition algorithms

期刊

ENERGY
卷 211, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.118530

关键词

Energy prediction; Subentry electric energy consumption; Office building; Pattern recognition; Adaptability analysis

资金

  1. National Key R&D Program of China [2017YFC0704200]
  2. Postdoctoral Research Grant in Henan Province of China [20192013]
  3. Ontario MRIS Earl Carrier Award

向作者/读者索取更多资源

The accurate day-ahead prediction of subentry electric energy consumption (SEEC) is a critical basis for elaborative building energy management. However, most of the current studies mainly focus on modeling overall energy consumption without distinguishing its patterns of different temporal features. At the same time, advances in metering technologies and machine learning methods provide new opportunities for detailed predictions. In this paper, a day-ahead prediction model based on the improved recognized patterns via fuzzy C-means clustering and nonlinear regression is proposed and discussed. The proposed indirect pattern recognition is carried out by taking advantage of the connotative incidence relation between fluctuation features and influencing factors. Considering the different temporal characteristics of hourly SEEC, this proposed model is applied in an office building with the scope to manage the day-ahead prediction of hourly HVAC subentry and hourly socket subentry. These are taken as the typical non-stationary sequence and typical stationary sequence respectively. Results show that the proposed pattern recognition is applicable for the non-stationary HVAC subentry, and a stable energy pattern can contribute to accurate predictions. Furthermore, the introduction of additional hourly meteorological parameters improves the accuracy via rolling prediction instead. Finally, the modeling adaptability and applicable implications are summarized for references of optimal building energy operation. Crown Copyright (C) 2020 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据