4.8 Article

Scalable continuous evolution for the generation of diverse enzyme variants encompassing promiscuous activities

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-19539-6

关键词

-

资金

  1. NIH NIGMS [R01GM125887]
  2. NSF [MCB 1545158]
  3. Beckman Young Investigator Award

向作者/读者索取更多资源

Enzyme orthologs sharing identical primary functions can have different promiscuous activities. While it is possible to mine this natural diversity to obtain useful biocatalysts, generating comparably rich ortholog diversity is difficult, as it is the product of deep evolutionary processes occurring in a multitude of separate species and populations. Here, we take a first step in recapitulating the depth and scale of natural ortholog evolution on laboratory timescales. Using a continuous directed evolution platform called OrthoRep, we rapidly evolve the Thermotoga maritima tryptophan synthase beta -subunit (TmTrpB) through multi-mutation pathways in many independent replicates, selecting only on TmTrpB's primary activity of synthesizing l-tryptophan from indole and l-serine. We find that the resulting sequence-diverse TmTrpB variants span a range of substrate profiles useful in industrial biocatalysis and suggest that the depth and scale of evolution that OrthoRep affords will be generally valuable in enzyme engineering and the evolution of biomolecular functions. Generating rich ortholog diversity for biocatalysts can be difficult due to the deep evolutionary processes involved. Here the authors use OrthoRep to rapidly evolve TrpB to produce sequence-diverse variants with altered substrate promiscuity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据