4.6 Article

Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 8, 期 45, 页码 23930-23938

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta09319j

关键词

-

资金

  1. National Natural Science Foundation of China [21878217, 21961142013, 91934302]
  2. National Science Foundation of Tianjin City [18JCZDJC36900]

向作者/读者索取更多资源

Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms via graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m(-2) h(-1) bar(-1) with an ultrahigh Na2SO4 rejection of 99.6%, as well as an unprecedented Cl-/SO42- selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据