4.5 Article

Mechanism of Aqueous Carbon Dioxide Reduction by the Solvated Electron

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 124, 期 46, 页码 10435-10441

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.0c07859

关键词

-

资金

  1. Swiss National Science Foundation [PZ00P2_174227]
  2. Swiss National Supercomputing Centre (CSCS) [s976]
  3. Swiss National Science Foundation (SNF) [PZ00P2_174227] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Aqueous solvated electron (e(aq)(-)), a key species in radiation and plasma chemistry, can efficiently reduce CO2 in a potential green chemistry application. Here, the mechanism of this reaction is unravelled by condensed-phase molecular dynamics based on the correlated wave function and an accurate density functional theory (DFT) approximation. Here, we design and apply the holistic protocol for solvated electron's reactions encompassing all relevant reaction stages starting from diffusion. The carbon dioxide reduction proceeds via a cavity intermediate, which is separated from the product (CO2-) by an energy barrier due to the bending of CO2 and the corresponding solvent reorganization energy. The formation of the intermediate is caused by solvated electron's diffusion, whereas the intermediate transformation to CO2- is triggered by hydrogen bond breaking in the second solvation shell of the solvated electron. This picture of an activation-controlled e(aq)(-) reaction is very different from both rapid barrierless electron transfer and proton-coupled electron transfer, where key transformations are caused by proton migration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据