4.6 Article

Predicting the Tool Wear of a Drilling Process Using Novel Machine Learning XGBoost-SDA

期刊

MATERIALS
卷 13, 期 21, 页码 -

出版社

MDPI
DOI: 10.3390/ma13214952

关键词

machine learning; flank wear prediction; XGBoost; SDA; optimization; machining parameters; drilling process; support vector machines; artificial neural networks

向作者/读者索取更多资源

Tool wear negatively impacts the quality of workpieces produced by the drilling process. Accurate prediction of tool wear enables the operator to maintain the machine at the required level of performance. This research presents a novel hybrid machine learning approach for predicting the tool wear in a drilling process. The proposed approach is based on optimizing the extreme gradient boosting algorithm's hyperparameters by a spiral dynamic optimization algorithm (XGBoost-SDA). Simulations were carried out on copper and cast-iron datasets with a high degree of accuracy. Further comparative analyses were performed with support vector machines (SVM) and multilayer perceptron artificial neural networks (MLP-ANN), where XGBoost-SDA showed superior performance with regard to the method. Simulations revealed that XGBoost-SDA results in the accurate prediction of flank wear in the drilling process with mean absolute error (MAE) = 4.67%, MAE = 5.32%, and coefficient of determination R-2 = 0.9973 for the copper workpiece. Similarly, for the cast iron workpiece, XGBoost-SDA resulted in surface roughness predictions with MAE = 5.25%, root mean square error (RMSE) = 6.49%, and R-2 = 0.975, which closely agree with the measured values. Performance comparisons between SVM, MLP-ANN, and XGBoost-SDA show that XGBoost-SDA is an effective method that can ensure high predictive accuracy about flank wear values in a drilling process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据