4.7 Article

Constrained Mixed-Variable Design Optimization Based on Particle Swarm Optimizer with a Diversity Classifier for Cyclically Neighboring Subpopulations

期刊

MATHEMATICS
卷 8, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/math8112016

关键词

particle swarm optimization; constrained optimization; evolutionary algorithm; global optimization; mixed-integer-discrete-continuous optimization

资金

  1. Basic Science Research Program through the National Research Foundation (NRF) of Korea - Ministry of Education [NRF-2016R1D1A1B03935288]

向作者/读者索取更多资源

In this research, an easy-to-use particle swarm optimizer (PSO) for solving constrained engineering design problems involving mixed-integer-discrete-continuous (MIDC) variables that adopt two kinds of diversity-enhancing mechanisms to achieve superior reliability and validity was developed. As an initial diversity-boosting tool, the local neighborhood topology of each particle is set up such that information exchange is restricted to a limited number of consecutively numbered particles. This topological mechanism forces each particle to move in the search space while interacting only with its neighboring subpopulation. The second diversity-enhancing task is to ensure that the exploration behavior of each particle in the search space is governed such that it follows the diversity classifier decision applied to its subpopulation. This diversity classification iteratively adjusts the three-phase velocity-related mechanism of each particle such that it approaches or retreats from its previous best position/the current best position among the subpopulation. In summary, this PSO tool not only introduces the social interaction of the particle within its cyclically neighboring subpopulation but also exploits the three-phase velocity behavior law governed by the distributed diversity measures categorized for each neighboring subpopulation. This scheme has superior reliability, as well as high practicality for engineering optimization problems involving MIDC variables, which are handled by the widely adopted straightforward rounding-off technique used in most swarm-inspired metaheuristic search technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据