4.6 Review

Editors' Choice-Review-Creating Electrocatalytic Heterojunctions for Efficient Photoelectrochemical CO2 Reduction to Chemical Fuels

期刊

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/abc841

关键词

Transition Metal Dichalcogenides (TMDs); Surface plasmon resonance; Perovskite; Photoelectrochemistry; Heterojunctions

向作者/读者索取更多资源

Artificial photosynthesis can potentially address the global energy challenges and environmental issues caused by fossil fuels. Photoelectrochemical heterojunction structures of new photonic structures have been developed for efficient sunlight absorption, charge generation and separation and transport, and selective reduction of CO2 and water splitting. In this review, an overview of several recently developed heterojunction model systems comprised of low-cost photonic materials such as transition metal dichalcogenides (TMDs), perovskite semiconductor nanocrystals, and plasmonic nanostructures is presented to rationalize the potential benefits of utilizing heterojunction structures for efficient and selective CO2 reduction with renewable energy resources. Recent advances in electroanalytical methods for CO2 reduction such as scanning electrochemical microscopy (SECM) are reviewed. These techniques can potentially resolve local CO2 reduction kinetics and their spatial heterogeneities of a heterojunction photoelectrochemical structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据