4.7 Article

Optimization of Vacuum Microwave-Assisted Extraction of Pomegranate Fruits Peels by the Evaluation of Extracts' Phenolic Content and Antioxidant Activity

期刊

FOODS
卷 9, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/foods9111655

关键词

pomegranate peels; antioxidants; vacuum microwave extraction; response surface methodology; polyphenols; radical scavenging; valorization

资金

  1. European Union (European Social Fund-ESF) [MIS 5048533]

向作者/读者索取更多资源

The global interest in the use of plant by-product extracts as functional ingredients is continuously rising due to environmental, financial and health benefits. The latest advances in extraction technology have led to the production of aqueous extracts with high bioactive properties, which do not require the use of organic solvents. The purpose of this study was to optimize the conditions applied for the extraction of pomegranate peels (PP) via a green industrial type of vacuum microwave-assisted aqueous extraction (VMAAE), by assessing the potential bioactivity of the extracts (in terms of phenolic content and antioxidant activity), using a response surface methodology. The extraction conditions of temperature, microwave power, time and water/PP ratio were determined by the response surface methodology, in order to yield extracts with optimal total phenolics concentrations (TPC) and high antioxidant activity, based on the IC50 value of the scavenging of the 2,2-diphenyl-1-picrylhydrazyl (DPPH?) radical. The values of the optimum extraction parameters, such as extraction temperature (61.48 and 79.158 degrees C), time (10 and 12.17 min), microwave power (3797.24 and 3576.47 W) and ratio of water to raw material (39.92% and 38.2%), were estimated statistically for the two responses (TPC and IC50 values), respectively. Under these optimal extraction conditions, PP extracts with high TPC ((5.542 mg Gallic Acid Equivalent (GAE)/g fresh PP))/min and radical scavenging activity (100 mg/L (1.6 L/min)) could be obtained. Our results highlighted that the optimized industrial type of VMAAE could be a promising solution for the valorization of the PP by-products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据