4.7 Article

Fractal Generalization of the Scher-Montroll Model for Anomalous Transit-Time Dispersion in Disordered Solids

期刊

MATHEMATICS
卷 8, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/math8111991

关键词

continuous time random walk; fractal; photocurrent; nanotube; anomalous diffusion; fractional equation; time-of-flight

资金

  1. Russian Science Foundation [19-71-10063]
  2. Ministry of Science and Higher Education of the Russian Federation [0004-2019-0001]
  3. Russian Science Foundation [19-71-10063] Funding Source: Russian Science Foundation

向作者/读者索取更多资源

The Scher-Montroll model successfully describes subdiffusive photocurrents in homogeneously disordered semiconductors. The present paper generalizes this model to the case of fractal spatial disorder (self-similar random distribution of localized states) under the conditions of the time-of-flight experiment. Within the fractal model, we calculate charge carrier densities and transient current for different cases, solving the corresponding fractional-order equations of dispersive transport. Photocurrent response after injection of non-equilibrium carriers by the short laser pulse is expressed via fractional stable distributions. For the simplest case of one-sided instantaneous jumps (tunneling) between neighboring localized states, the dispersive transport equation contains fractional Riemann-Liouville derivatives on time and longitudinal coordinate. We discuss the role of back-scattering, spatial correlations induced by quenching of disorder, and spatiotemporal non-locality produced by the fractal trap distribution and the finite velocity of motion between localized states. We derive expressions for the photocurrent and transit time that allow us to determine the fractal dimension of the distribution of traps and the dispersion parameter from the time-of-flight measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据