3.9 Article

Neural Network Predictive Modeling on Dynamic Portfolio Management-A Simulation-Based Portfolio Optimization Approach

期刊

出版社

MDPI
DOI: 10.3390/jrfm13110285

关键词

CVaR; GARCH; Pair Copula; simulation-based optimization; portfolio optimization; risk management

向作者/读者索取更多资源

Portfolio optimization and quantitative risk management have been studied extensively since the 1990s and began to attract even more attention after the 2008 financial crisis. This disastrous occurrence propelled portfolio managers to reevaluate and mitigate the risk and return trade-off in building their clients' portfolios. The advancement of machine-learning algorithms and computing resources helps portfolio managers explore rich information by incorporating macroeconomic conditions into their investment strategies and optimizing their portfolio performance in a timely manner. In this paper, we present a simulation-based approach by fusing a number of macroeconomic factors using Neural Networks (NN) to build an Economic Factor-based Predictive Model (EFPM). Then, we combine it with the Copula-GARCH simulation model and the Mean-Conditional Value at Risk (Mean-CVaR) framework to derive an optimal portfolio comprised of six index funds. Empirical tests on the resulting portfolio are conducted on an out-of-sample dataset utilizing a rolling-horizon approach. Finally, we compare its performance against three benchmark portfolios over a period of almost twelve years (01/2007-11/2019). The results indicate that the proposed EFPM-based asset allocation strategy outperforms the three alternatives on many common metrics, including annualized return, volatility, Sharpe ratio, maximum drawdown, and 99% CVaR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据