4.8 Article

Understanding the metal-to-insulator transition in La1-xSrxCoO3-δ and its applications for neuromorphic computing

期刊

NPJ COMPUTATIONAL MATERIALS
卷 6, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41524-020-00437-w

关键词

-

资金

  1. US Department of Energy, Office of Science, Basic Energy Sciences [DESC0019273]
  2. Office of Science of the US Department of Energy

向作者/读者索取更多资源

Transition metal oxides that exhibit a metal-to-insulator transition (MIT) as a function of oxygen vacancy concentration are promising systems to realize energy-efficient platforms for neuromorphic computing. However, the current lack of understanding of the microscopic mechanism driving the MIT hinders the realization of effective and stable devices. Here we investigate defective cobaltites and we unravel the structural, electronic, and magnetic changes responsible for the MIT when oxygen vacancies are introduced in the material. We show that, contrary to accepted views, cooperative structural distortions instead of local bonding changes are responsible for the MIT, and we describe the subtle interdependence of structural and magnetic transitions. Finally, we present a model, based on first principles, to predict the required electric bias to drive the transition, showing good agreement with available measurements and providing a paradigm to establish design rules for low-energy cost devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据