4.7 Article

Safe Nonlinear Trajectory Generation for Parallel Autonomy With a Dynamic Vehicle Model

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2017.2771351

关键词

Advanced driver assistance systems (ADAS); parallel autonomy; motion planning; collision avoidance; trajectory generation; shared control; intelligent vehicles

资金

  1. Toyota Research Institute (TRI)

向作者/读者索取更多资源

High-end vehicles are already equipped with safety systems, such as assistive braking and automatic lane following, enhancing vehicle safety. Yet, these current solutions can only help in low-complexity driving situations. In this paper, we introduce a parallel autonomy, or shared control, framework that computes safe trajectories for an automated vehicle, based on human inputs. We minimize the deviation from the human inputs while ensuring safety via a set of collision avoidance constraints. Our method achieves safe motion even in complex driving scenarios, such as those commonly encountered in an urban setting. We introduce a receding horizon planner formulated as nonlinear model predictive control (NMPC), which includes the analytic descriptions of road boundaries and the configuration and future uncertainties of other road participants. The NMPC operates over both steering and acceleration simultaneously. We introduce a nonslip model suitable for handling complex environments with dynamic obstacles, and a nonlinear combined slip vehicle model including normal load transfer capable of handling static environments. We validate the proposed approach in two complex driving scenarios. First, in an urban environment that includes a left-turn across traffic and passing on a busy street. And second, under snow conditions on a race track with sharp turns and under complex dynamic constraints. We evaluate the performance of the method with various human driving styles. We consequently observe that the method successfully avoids collisions and generates motions with minimal intervention for parallel autonomy. We note that the method can also be applied to generate safe motion for fully autonomous vehicles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据