4.7 Article

Synthesis and Stabilization of Gold Nanoparticles Using Water-Soluble Synthetic and Natural Polymers

期刊

POLYMERS
卷 12, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/polym12112625

关键词

gold nanoparticles (AuNPs); gold nanorods (AuNRs); one-pot and growth seeding methods; polysaccharides; synthetic water-soluble polymers; storage stability

资金

  1. Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan [08052594]

向作者/读者索取更多资源

Gold nanoparticles (AuNPs) were synthesized and stabilized using the one-pot method and growth seeding, through utilization of synthetic polymers, including poly(N-vinylpyrrolidone) (PVP), poly(ethylene glycol) (PEG), and poly(vinylcaprolactame) (PVCL), as well as natural polysaccharides, including gellan, welan, pectin, and kappa-carrageenan. The absorption spectra, average hydrodynamic size, zeta-potential, and morphology of the gold nanoparticles were evaluated based on various factors, such as polymer concentration, molecular mass of polymers, temperature, and storage time. The optimal polymer concentration for stabilization of AuNPs was found to be 4.0 wt % for PVP, 0.5 wt % for gellan, and 0.2 wt % for pectin, welan, and kappa-carrageenan. The values of the zeta-potential of polymer-stabilized AuNPs show that their surfaces are negatively charged. Most of the AuNPs are polydisperse particles, though very monodisperse AuNPs were detected in the presence of a 0.5 wt % gellan solution. At a constant polymer concentration of PVP (4 wt %), the average size of the PVP-AuNPs decreased with the decrease of molecular weight, and in the following order: PVP 350 kDa (similar to 25 nm) > PVP 40 kDa (similar to 8 nm) > PVP 10 kDa (similar to 4 nm). The combination of Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy revealed that the functional groups of polymers that are responsible for stabilization of AuNPs are lactam ring in PVP, carboxylic groups in gellan and welan, esterified carboxylic groups in pectin, and SO2 groups in kappa-carrageenan. Viscometric and proton nuclear magnetic resonance (H-1 NMR) spectroscopic measurements showed that the temperature-dependent change in the size of AuNPs, and the gradual increase of the intensity of AuNPs at 550 nm in the presence of gellan, is due to the rigid and disordered conformation of gellan that affects the stabilization of AuNPs. The AuNPs synthesized in the presence of water-soluble polymers were stable over a period of 36 days. Preliminary results on the synthesis and characterization of gold nanorods stabilized by polymers are also presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据